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ABSTRACT

Power-law(fractal) extreme-valuestatisticsare
applicable to many natural phenomenaunder a
wide variety of circumstances.Data from ahydro-
logic station in Keokuk, Iowa, shows the great
flood of the Mississippi River in 1993 has a recur-
rence interval on the order of 100 years using
power-law statisticsapplied to partial-duration
flood seriesand on theorder of 1,000 yearsusing
a log-Pearsontype 3 (LP3) distribution applied to
annual series.The LP3 analysis is the federally
adoptedprobabilitydistributionfor flood-frequency
estimationof extremeevents.We suggestthatpower-
law statisticsare preferableto LP3 analysis.As a
further test of the power-law approachwe consi-
der paleoflooddata from the ColoradoRiver. We
comparepower-law andLP3 extrapolationsof his-
torical datawith thesepaleo-floods.The resultsare
remarkablysimilar to thoseobtainedfor theMis-
sissippi River. Recurrenceintervals from power-
lawstatisticsapplied to LeesFerrydischargedata
are generallyconsistentwith inferred 100- and
1,000-yearpaleofloods,whereasLP3 analysisgives
recurrenceintervalsthat are ordersof magnitude
longer.ForboththeKeokukandLeesFerrygauges,
the useof an annualseriesintroducesan artificial
curvaturein log-logspacethat leadsto anunderes-
timateof severefloods.Power-lawstatisticsarepre-
dicting muchshorterrecurrenceintervalsthanthe
federallyadoptedLP3 statistics.We suggestthat if
power-law behavior is applicable,then the likeli-
hood of severefloods is much higher. More con-
servative dam designs and land-use restrictions
may be required.

INTRODUCTION

The great flood of 1993 in the upper Mississippi
River basin once again focused attention on the relia-
bility of flood-frequencyforecasts.A fundamentalques-
tion in calculating flood probabilities is whether the
statisticalmethodsusedprovidean adequateestimatefor
expectedrecurrenceintervals. The resultspresentedin
this papersuggestthat federally adoptedtechniquesfor
flood-frequency forecasting in the Mississippi River
basin seriously underestimaterecurrenceintervals of
extreme floods.

Floods are complex phenomenainvolving coupled
meteorologicaland hydrological processes;they are
also influencedby humanfacilities andactivities,includ-
ing dams, channelization,and land use. Recurrence
intervals are a meansof expressingthe oddsof a given
magnitudeflood being exceededin any yearandare an
important factor in flood control, land-useregulation,
emergencyplanning, and insuranceconsiderations.

Historically, flood-frequency estimationhas been
treatedstrictly on an empiricalbasis anda wide variety
of statistical distributions have been used.The most
commonly used frequency-magnitudedistributions in
hydrology can be divided into four groups: the normal
family (normal, log-normal, log-normal type 3), the
general extreme-value(GEV) family (GEV, Gumbel,
log-Gumbel,Weibull), thePearsontype3 family (Pearson
type 3, log-Pearsontype 3), and the generalizedPareto
distribution. Stedingerand others (1993) provide an
excellentdiscussionand review of thesedifferent dis-
tributions.Severefloods are associatedwith the tails of
the flood-frequencydistributions. Two extreme beha-
viors for the tailsare power-lawandexponential.Power-
law tails give much shorterestimatesof flood recurrence
intervals than exponentialtails.

The standardapproachfor flood-frequencyestima-
tion is to considera sequenceof maximumannualfloods
and obtain the best empirical fit of the chosenstatis-
tical distribution to this dataset.Thebestfit is obtained
by equating the statistical momentsof the data to the
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distribution. Additional constraints,such as the censor-
ing of outlier points,are commonlyused.In the United
States,the federally adoptedapproachto flood-fre-
quencyestimationis to fit logarithmsof the annualpeak
discharges to the Pearsontype 3 distribution (U.S.
Water ResourcesCouncil, 1982); some countrieshave
adoptedother types of distributions.Australiauseslog-
Pearsontype 3 (LP3) distributions as their standardfor
flood-frequencyestimation. However, Vogel and others
(1993) have argued that in many parts of Australia
generalizedPareto distributions perform significantly
better than LP3.

In this paper the validity of power-lawstatistics in
estimating floods is considered.Many natural pheno-
mena satisfy power-law (fractal) frequency-magnitude
statistics.Examplesare found in a wide variety of cir-
cumstanccsand includc fragmcntation, carthquakcs,
volcanic eruptions,mineral deposits, and land forms
(Turcotte, 1992). Turcotte and Greene(1993) have
argued the validity of power-lawstatisticsto floods in
the United Statesutilizing 14 USGS bench-markgaug-
ing stations. Turcotte(1994) extendedthesearguments
by studying 1,200 gauging station records across the
United States.

Weexaminethe greatMississippiRiver flood of 1993
with power-lawand LP3 analyses,concentratingon his-
torical flood recordsfrom Keokuk, Iowa (Figure 1). This
station has a long record (1879—present)and is repre-
sentativeof flood dischargeson the Mississippi River
during the great flood of 1993. A difficulty with calcu-
lating recurrenceintervals is that they are usually based
on hydrologic station recordsof continuousdischarges,
whicharegenerallyshort,on theorderof a hundredyears
or less.As a further test of the power-lawapproachwe
considerpaleofloodson theColoradoRiver in the Grand
Canyon of Arizona.Paleoflooddatagive an estimateof
dischargefor single extremeeventsover a much longer
time period.

DISTRIBUTIONS

Power-Law

The volumetric dischargeq(t) at a point on a river
is generallya continuoustime series.We are concerned
with the extremevaluesof this time seriesand define
Q(T) to be the maximum dischargeassociatedwith a
recurrenceinterval of T years. For example,Q(l00)
would be the maximum discharge(flood) that has an
averagerecurrenceinterval of 100 years,i.e., in any one
year, there is a one-in-onehundredchanceof the peak
dischargeequaling or exceedingQ(l00).

The power-lawdistribution for flood-frequencytakes
the form:

Q(T) CT~’ Eq. 1

where C and cx are regressioncoefficients.Taking the
logarithmsof both sides of Equation 1 gives:

log Q(T) cc log T + C’ Eq.2

This scale invariant distribution can be expressedin
terms of F, the ratio of the peakdischargeover a 10-
year interval to the peakdischargeover a 1-year inter-
val. With self-similarity, theparameterF is also theratio
of the 100-yearpeak discharge to the 10-yearpeak
discharge:

F=~~10~ Q(100) = constant
Q(l) Q(l0)

Eq.3

In terms of cx we have:

F = 10~~ Eq.4

If the flood-frequencyfactor F is large the ratio of
the 10-yearto the 1-year flood will be large, if F is
small the ratio will be small. The parametercx is the
slope of a log(Q) versus log(T) plot. Parameterscx and
F are related by Equation 4. As in all applicationsof
power-law distributions to natural processes,there are
upperandlower limits to the validity of the power-law.

Log-PearsonType 3

The LP3 distribution has been adoptedby Federal
agenciesin the United Statesfor flood-frequencyesti-
mation (U. S. WaterResourcesCouncil, 1982). TheLP3
distributiondescribesa randomvariablewhoselogarithm
is a Pearsontype 3 distribution. The logarithmsof an
annualflood scricsarc uscdto calculatcthc mcan, stan-
dard deviation,and skew. Thesethree momentsdeter-
mine the shape, scale, and location parametersthat
characterizethe LP3 distribution. The LP3 fit involves
three empirical constantswhereasthe power-law fit
involves only two. The U. S. Water ResourcesCouncil
(1982) outlinesthe applicationof the LP3 to an annual
flood series. In our analyses,we usethesemethodsfor
dealing with outliers, conditional probability, weighted
skew, andK coefficients.The weightedskewcoefficient
is calculatedusing the generalizedskew coefficient as
obtainedfrom the U. S. WaterResourcesCouncil (1982)
generalizedskew map.

DATA ANALYSIS

Annual and Partial-DurationFlood Series

An annualflood is the peakdischargeduringa water
year, where the water year is definedto be a 12-month
period from October 1 of the previous year through
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Figure1. Map of the United Statesshowingthe upperMississippiRiver basinandthe extentof floodingduring 1993 (U.S. GeologicalSur-
vey, 1996). Also shown is the location of the Keokuk, Iowa, stream-flow-gaugingstationusedin this paper.

September30 of the water year. For example,the 1995
water year extendsfrom October 1, 1994, through Sep-
tember30, 1995.Data sets used in our analysesconsist
of meandaily dischargesand are used to determinethe
peakdischarge(flood) in each water year. The annual
flood seriesis the sequenceof annualfloods overaspeci-
fied interval of time.

A major problemwith an annualflood seriesis that
severalfloods in a given water yearmay be larger than
the annual flood in anotherwater year. To overcome
this difficulty, we also considera partial-durationflood
serieswheremore thanoneflood can occur in a water
year. In our definition of a partial-durationflood series,
peak dischargesmust be separatedby at least thirty
days in order to be classifiedas separatefloods. For a
given water year we take Q, the maximum meandaily
discharge(flood) for thatyear,anddeleteall valuesthirty
days on either side. We then take the next largestQ,
and againdelete all values thirty days on either side.
We continueuntil we havethe six largestQ’s for that
water year. This processis repeatedfor the otherwater
years.The total number of water years in our data set
is N. To arrive at the partial-durationflood series the

6N valuesof Q are orderedfrom largestto smallest.Our
final partial-durationflood seriesis the N largestordered
Q’s, i.e., the subset of largestordered Q’s that corres-
ponds with the numberof water years considered.

Otherdefinitionsfor a partial-durationflood seriescan
be made (Hipel, 1994). For example, we could have
requiredthat the Q’s in the partial-durationseriesbe
separatedby sixty days insteadof thirty days,or applied
the criteria that the flow q must drop to some fraction,
say 50 percent, of the flood value Q before another
flood was chosen.Anotherapproachis to usethe peaks
over threshold method (Hosking and Wallis, 1987;
Davison and Smith, 1990; and Barrett, 1992). In this
methodthe peaksovera chosenthreshold,typically one
to five peryear, definethe partial-durationflood series.
We have applied severalpartial-durationdefinitions to
our datasets and find that the differencesare small; as
such we only -use the definition that Q’s are separated
by at least thirty days.

For both the annual flood series and the partial-
duration flood seriesthe Q’s of eachflood are ranked
(r = 1, 2,3,..., N) from largest to smallest,where N
is the numberof water years in the data set. If Q is

Explanation
— Extent of 1993 Flooding

Boundary of Upper Mississippi River Basin
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equaledor exceededr timesin N years (N is large),then
the recurrenceinterval in years is T = N/r. As an
example,if wetakea dataset with N 114 wateryears,
the largest Q is assigneda recurrenceinterval of
T 114/1 114 years,the secondlargestT = 114/2 =

57 years, and so forth until the 114th value with T =

114/114= 1 year. This is entirely equivalentto acumu-
lative frequency/sizeanalysis where r, the cumulative
number greaterthan a size, is plotted as a function of
size. This technique is routinely applied to the fre-
quency/sizestatisticsof earthquakesand otherextreme-
value events(Turcotte, 1992).

Data

On the basis of length of record and drainagebasin
size we havechosengaugingstation 05474500 on the
Mississippi River at Keokuk, Iowa, to be representa-
tive of flooding statisticson the Mississippi River dur-
ing the great1993 flood. The drainageareaupstreamof
this station is 308,000 km2 and a 117-year record of
mean daily dischargesfrom 1879 to 1995 is available
(Slack and Landwehr, 1992; May, 1996). We use this
data to constructboth annualand partial-durationflood
series for the gaugeat Keokuk, Iowa. In our analyses,
we calculate flood-frequencyforecaststhat would be
madewith dataavailablebefore the great1993 Missis-
sippi River flood occurred(water years 1879—1992)and
thencomparehow the forecastschangewith the addition
of the 1993 flood (wateryears1879—1995).Foreachtime
period, we estimateflood-frequencyusing LP3 applied
to annual series, and comparethese with power-laws
applied to partial-durationseries.

One of the most extensivestudies of paleofloods
was carriedout by O’Connor and others(1994). These
authors usedthe stratigraphicrecord to quantify large
floods during the last4,500 years at AxehandleAlcove
on the Colorado River in the Grand Canyon,Arizona.
We comparetheir geologicestimatesof the lowerbounds
of dischargesassociatedwith the largestpaleofloods
that occurredin the last4,500years with historical dis-
chargedataavailablefrom wateryears192 1—1962atLees
Ferry, Arizona (ADAPS, 1996). The Lees Ferry gauge
at USGS station 09380000 has a drainage area of
289,600 km2 and is located on the Colorado River in
Arizona, 3 km upstreamof AxehandleAlcove. Unregu-
lated daily dischargedataexists for water years 1921—
1962.Dischargehasbeenregulatedby the Glen Canyon
Dam since the beginning of the 1963 water year.

RESULTS

Mississippi River at Keokuk, Iowa

In Figure 2 (1879—1992)and Figure 3 (1879—1995)
the logarithms of the Keokuk floods, log(Q), are
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Figure 2. Dependenceof the maximum daily dischargeQ asso-
ciatedwith the periodT on the periodT. Thepartial-durationand
annualflood seriesfor station 05474500on the Mississippi River
at Keokuk, Iowa, are shown for water years 1879—1992. Also
includedis the least-squarespower-law fit for the partial-duration
flood series,as well asthe log-Pearsontype 3 (LP3) distribution
basedon theannualflood seriesandtheproceduresof Bulletin 17B
(U. S. WaterResourcesCouncil, 1982).

plotted against the logarithms of the recurrenceinter-
vals, log(T). For both time periods, the annual and
partial-durationflood seriesstronglydivergefor periods
of less than about 5 years becausemultiple floods in
some water years are much larger than the largestflood
in other water years.

For a power-law distribution of floods the relation
betweenlog(Q) and log(T) is given in Equation 2. In
log-log spacea power-lawdistribution correspondsto a
straight line with slope cx and interceptC’. The best-fit
straightlines to the partial-durationKeokuk flood series
for 1879—1992and 1879—1995using a least-squaresfit
in log-log spacegive respectivelycx = 0.19, 0.20and C’
= 3.69, 3.68 with an r2 = 0.97, 0.94. The corresponding
flood-frequencyfactors from Equation 4 are F = 1.53
and 1.58. The best-fit straight lines for the two time
periodsare given separatelyin Figures 2 (1879—1992)
and 3 (1879—1995)and togetherin Figure 4. Extrapola-
tion of the straight line for wateryears 1879—1992to the
maximumdaily flow during the 1993 flood, Q = 12,300
m3/s, results in a recurrenceinterval of T = 151 years.

0
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Figure 3. SameasFigure 2 exceptthe period consideredis water
years1879—1995.Themaximum daily dischargeassociatedwith
the 1993 flood is shown.
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Figure 4. The power-lawand LP3 curvesgivenin Figures 2 and
3 areextrapolatedto themaximum flow during the 1993 flood (Q
— 12,300 m

3Is). For the 1879—1992 flood seriesthe recurrence
interval for the 1993 flood is 151 yearsbasedon power-lawstatis-
tics and4,300 yearsbasedon LP3 analysis.For the 1879—1995
flood seriestherecurrenceinterval is 115 yearsbasedon power-law
statisticsand 1,000yearsbasedon LP3 analysis.

With the addition of 1993—1995 (water years 1879—
1995) this extrapolationis reducedto a recurrencetn-
terval of T = 106 years.The two forecastsdo not dif-
fer significantly from one another(Figure 4) and are
consistentwith the 1993 flood being a typical 100-year
flood.

Another considerationis whether the extrapolated
recurrenceintervals for Keokuk would be significantly
different for much smaller subsetsof the 1879—1995
period. Using the same procedurefor two 32-year
periods,extrapolationof the best fit power-lawline to
a dischargethe size of the great flood of 1993 results
in recurrenceintervals at Keokukof 179 and 165 years
for the periods 1900—1931 and 1932—1963.The results
for the two 32-year periods do not vary significantly
from the recurrenceintervals of 151 and 106 years as
obtained for the 114-year(1879—1992) and 117-year
(1879—1995)periods.

The best LP3 distribution is found usingthe annual
flood series from the gaugeat Keokuk, Iowa, and the
proceduresas outlined by the U.S. Water Resources
Council (1982).The result using wateryears 1879—1992
is given in Figure 2. After two low outliers were cen-
sored, the logarithmsof the remaining112 points were
usedto obtain the first threemoments:X = mean= 3.70,
S = standarddeviation = 0.14, and G = station skew =

—0.36. The weighted skew coefficient, Gw —0.37, is
calculatedusing a generalizedskew coefficient of G =

—0.4. The best-fitLP3 distribution given in Figure 2 has
considerablecurvatureresulting in long recurrenceinter-
vals for severefloods. The extrapolationof this LP3
curve to the great flood of 1993, Q = 12,300m3/s, is
shown in Figure 4. For the time period 1879—1992,the
resulting recurrenceinterval is T = 4,300 years,almost
thirty timeslonger than what we obtainedusing power-
law statistics for the sametime period.

We havealso usedthe LP3 distribution to obtain a
best-fit LP3 curve for the annualflood seriesat Keokuk
from 1879—1995.Again, two low outliers werecensored,
and we found X = 3.70, 5 = 0.14, G = —0.22, and G~
— —0.25. The resulting LP3 curve is given in Figure 3
and again has considerablecurvature. Extrapolationof
the LP3 curve to the great flood of 1993 (Q = 12,30Q
m3/s) is also shown in Figure 4. For the time period

1879—1995,the extrapolatedrecurrenceinterval is T =

1,000years,aboutten times longerthan what we found
using power-law statistics for the sametime period.

The inclusionof the 1993 Mississippi River flood in
the LP3 analysisresults in the two recurrenceinterval
estimatesbeing very different, T = 4,300 years (1979—
1992)versusT = 1,000years(1879—1995).Therecurence
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Figure 5. Dependenceof the maximumdaily dischargeQ asso-
ciatedwith the period T on the periodT for the ColoradoRiver in
the GrandCanyon,Arizona. Thepartial-durationandannualflood
seriesfor station 09380000on the Co]oradoRiver at LeesFerry,
Arizona, are shown for wateryears1921—1962.The least-squares
power-law fit to the partial-durationflood seriesand LP3 distri-
bution basedon the annualflood seriesare also included.PointsA
andB are estimatesof two pateofloodsbasedon the stratigraphic
record at Axehandle Alcove obtained by O’Connor and others
(1994).

intervals found usingLP3 are considerablymore sensi-
tive to a single largeflood (in this casethe great 1993
Mississippi River flood) than those found usingpower-
laws.

Colorado River Paleofloods

Using datafrom the LeesFerry gaugeon the Colo-
radoRiver for water years 1921—1962,we constructthe
partial-durationand annualflood series, orderingthem
from largest to smallest (r = 1, 2, 3 42). For a
power-lawdistribution, the best-fit straight line to the
partial-durationflood seriesusing a least-squaresfit in
log-log spacegives a = 0.28, C = 3.28, r2 0.92 and
F = 1.93. This straight-linefit is given in Figure 5. Using
the best-fit LP3 distribution to the annualflood series
with no outliers censored,the first threemomentsare X
= 3.32, 5 = 0.20, and G = —0.34. The weighted skew
coefficient of Gw = —0.23 is calculatedusing a gener-
alizedskewcoefficientof G = 0.00.TheLP3 fit hasmuch

more curvaturein log-log spacewhen comparedto the
power-law fit (Figure 5) resulting in longer recurrence
intervals for severefloods.

Two paleoflood dischargeestimatesfrom stratigra-
phic interpretationsof O’Connor and others (1994) at
Axehandle Alcove are plotted as points A and B in
Figure 5. Point A correlateswith sedimentsdeposited
after 520—280calendaryearsBP and a peakflow greater
than Q = 8,800 m3/s. Point A is interpreted to be the
historic Colorado River flood of 1884. The flow from
stratigraphicinterpretation(Q = 8,800 m3/s) compares
favorably with rough historical estimates(Q = 8,500
m3/s). We assignthis point a recurrenceinterval of 112
years. Extrapolation to the Colorado River flood of
1884 (Q = 8,800 m3/s) usingthe Lees Ferry power-law
fit suggestsa recurrenceinterval of T = 200 years.Ex-
trapolation of the LP3 curve suggestsa much longer
recurrenceinterval of T = 7,000years.Point B is a single
great flood wirh a flow greaterthan Q = 14,000 m3/s
andwasdatedby O’Connorandothers(1994)at 1,600—
1,200 calendaryears BR We assignthis point a recur-
renceinterval of T = 1,400 years.This great 1,000-year
paleofloodis remarkablycloseto thepower-lawextrapo-
lation and greatly exceedsany flood forecastby LP3
analysis.

DISCUSSION

The federally adoptedapproachfor flood-frequency
estimationuses LP3 distributions fit to annual flood
series.Our primary objectionto this approachis that the
useof theannualflood seriesintroducesan artificial cur-
vature in log-log spacethat leadsto an underestimateof
severefloods. There are often two, three, or evenmore
partial-durationfloods in one year that exceedannual
floods in otheryears.In an annualflood series,multiple
floods during a water year are ignored since only one
flood perwater year is considered.In Figures2, 3, and
5, the partial-durationflood seriesis well representedby
power-lawstatistics whereasthe annualflood sertesis
not.

For power-law analyses,the great 1993 Mississippi
River flood was a 100-yearflood, whereasfor the LP3
analysisit was a 1,000- to 10,000-yearflood. In many
ways the 1884 ColoradoRiver flood is analogousto the
1993 Mississippi River flood. Thesetwo floods are
either typical 100-yearfloods or 1,000-year(or more)
floods that happenedto occurduring this 100-yeartime
interval. In both cases,the partial-duration series is
better representedby power-law statistics than LP3.
The power-law statistics forecastmuch shorter recur-
renceintervals supportingthe ideathat thesetwo floods
are typical 100-yearfloods.Finally, the power-lawfit to
the historical dischargesat LeesFerry on the Colorado
River extrapolatesextremely well to both of these
stratigraphically interpretedpaleofloods at Axehandle
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Alcove (Figure 5). The paleoflooddatedat 1,600—1,200
years BP has a discharge60 percent greaterthan the
1884 flood andis a good candidatefor the “true” 1,000-
to 10,000-yearColoradoRiver flood.

Up to this point use of power-lawversusLP3 analy-
ses for flood-forecastinghasbeenstrictly empirical. We
now addressthe question, is therea scientific rationale
for the applicability of power-law statistics to severe
floods? Many natural phenomenasatisfy power-law
(fractal) frequency-magnitudestatistics and evidence
is accumulatingto support an underlying physical ba-
sis (Feder, 1988). This evidenceincludessystems,such
as the logistic map (May, 1976), that exhibit determi-
nistic chaos and often satisfy power-law statistics.
Further evidencecomes from a variety of both deter-
ministic and statistical models, such as the sand-pile
model (Bak et al., 1988), that exhibit self-organized
criticality and also yield power-lawfrequency-sizedis-
tributions.

A river flow is a classicexampleof a time series.A
time series is self-similar if its spectral power density
has a power-lawdependenceon frequency.Self-similar
time seriesare often referred to as fractional Gaussian
noises or fractional Brownian walks (Mandelbrot and
Wallis, 1969).Thework of Hurst andothers(1965) sup-
ports the applicationof power-lawdistributionsto flood-
frequencyestimation.Hurst studiedthe flow of the Nile
River and introducedrescaledrange analysis. By per-
forming a running sum of the river dischargeto find the
variations in reservoir storage, Hurst found that the
reservoirstorageis generallya fractional Brownian mo-
tion with a power-lawdependenceof the storagerange
on the interval of time considered.

An essentialquestionwith floods is whether the
frequency-magnitudedistribution obeys power-law, log-
normal, or other statistics.If severefloods result from
the successiveadditionof a sequenceof randomevents,
suchasrainstorms,thenin analogyto therangeof reservoir
storage,the floods may obey power-lawstatistics.The
1993 flood on the Mississippi River was causedby a
sequenceof severerainstormsover a period of months,
accumulatingto give a very high flood run-off. Although
the processesthat lead to a flood are very complex, it
appearsreasonableto hypothesizethat severefloods be-
haveas fractional Brownianwalks ratherthan fractional
Gaussiannoises and as a result may satisfy power-law
statistics.

CONCLUSIONS

We haveapplied power-law statisticsto the partial-
duration flood seriesat Keokuk, Iowa, for the periods
1879—1992 and 1879—1995, and find that the great
Mississippi River flood of 1993 (Q — 12,300 m3/s)
would have a recurrenceinterval of T = 151 and 115
years. We have also applied the log-Pearsontype 3

distribution to the annual flood series at this station
and find that the 1993 Mississippi flood would havea
recurrenceintervalof T = 4,300and1,000years.Accord-
ing to power-lawstatisticsthis flood wasa rathertypical
100-year flood, whereasfor LP3 it was a 1,000- to
IO,OOO-yearflood. In addition, the LP3 analysisis con-
siderably more sensitive to the inclusion of the single
large flood (the great 1993 Mississippi River Flood)
than the power-lawanalysis.

As a further test of the two methodsof flood-fre-
quency forecasting we have considereda record of
paleofloodson the ColoradoRiver. The resultsare re-
markably similar to those for the Mississippi River.
Power-lawrecurrenceinterval estimatesbasedon histori-
cal dischargedata from Lees Ferry are generallycon-
sistent with inferred 100- and 1,000-yearpaleofloods
from AxehandleAlcove, just downstreamof LeesFerry.
On the otherhand,LP3 analysisgives recurrenceinter-
vals that are ordersof magnitude longer.

Although there will certainly be both upper and
lower cutoffson the applicability of power-lawdistribu-
tions, we argue that for the Keokuk and Lees Ferry
gaugesthere is an excellent fit of the power-lawdistri-
bution to the partial-durationflood series. If power-law
fits are correct,then severefloods are much morelikely
to occur than flood-frequency forecastsbased on the
federally adopted log-Pearsontype 3 methodology.
More conservativedesigns for dams and land-usere-
strictions may be appropriate.We suggestusing the
power-lawfit when extrapolatingto arrive at estimates
for the severity of future floods.
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